Test \# 1 for Math 26600 (Fall 2020)

Please show your work.
Please print your names:

1) (10 points) Solve the given differential equation. $\frac{d y}{d t}=\frac{2 y e^{-2 t}}{4-3 y^{2}}$
2)(10 points) Sketch the phase line for the given DE. Identify the equilibrium points as sink, source, or node.

$$
y^{\prime}=y^{2}-2 y-3
$$

Please turn over for Problem 3
3)(10 points) Locate the bifurcation value for the one-parameter family of DEs and draw a typical phase line for values of the parameter smaller than, larger than, and at the bifurcation value. $\frac{d y}{d t}=\mu y^{2}-y^{3}$

Please turn over for Problem 4
4)(10 points) Find the general solution to the following linear DE.

$$
\frac{d y}{d t}=2 y+e^{t}
$$

