
COMP 120 - Problem Solving Assignment 2

Due: Thursday, September 24 @ 10:00PM

Required Background:
• “Introduction to Python Programming and Data Structures” - Chapter 10, Basic GUI

programming using Tkinter.

Assignment Overview:
For this assignment you will write a GUI program based, but not identical to, programming
exercise 10.18,

Be sure to read this entire document before beginning to work on the assignment.

This assignment is worth a total of 100 points.

Initial Setup
Both you and your partner will need to get the starter code for your group using Git.

1. You will need your group number in what follows. Get this from the “PSA Group
Numbers” file under the “PSAs” tab on Blackboard.,

2. In VS Code, open the command palette and select the “Git Clone” option.

3. When prompted for the repository URL, enter the following, with X replaced by your
group number (e.g. 7 or 12).

 ssh://git@code.sandiego.edu/comp120-sp20-psa2-groupX

4. Choose the “Open Repository” option in the window that pops up in the lower-right
corner of the screen. The repository should contain the following files:

– addressbook.py: You will put all of the code you write for the problem in this
file.

– addresses.txt: A starter data file containing a couple addresses for the problem.
5. Each programming team will have it own repository that has been initialized with the

same starter code, so when you sync your code, you are sharing with your partners,
but with no one else in the class. (I can see your repository also.)

Remember that if you close VS Code, then when you reopen it, you should see your
repository. But if you don’t see it, then just select File->Open…, and then select the
directory containing your repository.

We also recommend that you stage changes, commit those changes, and sync the changes
peridically as you are working on the program, and certainly when you are done with a
session with your programming partner. This ensures that you won’t lose any of your work
in case your computer gets lost or a file gets accidentally deleted.

The Problem
As said above, the problem is based on, but not identical to exercise 10.18 in your textbook.
You started working on exercise 10.18 in lab last week, so the first thing you do is copy the
code you wrote there into addressbook.py to get you started. You will have to edit it,
because this problem is different.

The screen your program displays should look like:

Your program should maintain an address list that the user of the program can edit. The
user can add a new address by typing in the name, street, city, state, and zip of a person
into the entry fields at the top of the window, and then hitting the “Add” button. The user
can move around the address list using the “First”, “Next”, “Previous”, and “Last” buttons.
An address can be deleted using the “Delete” button. A file containing an address list can be
loaded using the filename entry field and the “Load File” button. An address list can be
saved to a file using the filename entry field and the “Save to File” button. And finally, the
“Quit” button quits the program.

Here are the details. Your program must adhere to the following requirements:

1. The program should maintain the address list as a Python list. (The choice of a list
becomes the natural choice after seeing the behavior of the buttons in the window.)

2. Each entry in the address list should be an object of type Address. So you need to
define a class called Address that encapsulates (with instance variables) the name,
street, city, state, and zip of a single address. The Address class should be defined in
the same file as the AddressBook class.

3. The “First” button displays the first address in the address list. The address is
displayed in the entry name, street, city, state, and zip fields. So the entry fields

double as display fields. If there is no first address (the address list is empty), the
button should not do anything.

4. The “Next” button displays the next address in the address list (the next address
after the one currently being displayed). This suggests that the program should
keep track of the index of the address currently being displayed. If there is no next
address (the last address is already being displayed, or the list is empty), the button
should not do anything.

5. The “Previous” button should display the previous address in the address list. If
there is no previous address, the button should not do anything.

6. The “Last” button should display the last address in the address list. If there is no
last address (the list is empty), the button should do nothing.

7. If an address is displayed in the entry fields, the user can edit it in any way they
want, and then add that address to the address book by hitting the “Add” button.
The address should be added directly after the current address that is being
displayed. If there is no current address (because the list is empty), then the added
address should go at the beginning of the list. After an add, the newly added address
should become the current address being displayed.

8. If the user hits the “Delete” button, the currently displayed address should be
deleted from the address list. If there is no currently displayed address (because the
list is empty), the button should not do anything. After an address is deleted, the
currently displayed address should be the address after the deleted address, and if
there is not next address, the previous address, and if there is also no previous
address (because the list is now empty), nothing should be displayed.

9. The user can load an address list from a file by entering a filename in the “Filename”
entry field, and hitting the “Load File” button. If the filename entry field is empty, or
if the file cannot be opened, then the button should not do anything. If the file can
be opened, the current address list should be deleted, and replaced by the contents
of the file. The format of the file is illustrated by the sample file in the repository. (5
lines for each address – one line for each field of the address.) You can assume that
an address file has the correct format, so you do not have to do any exception
handling while reading the file. After reading in a file, the current address should be
the first address that was read in from the file.

10. The user can store an address list to a file by entering a filename in the “Filename”
entry field, and hitting the “Save to File” button. If the filename entry field is empty,
or if the file cannot be opened, then the button should not do anything. If the file can
be opened, the current address list should be written to the file. The format of the
file is illustrated by the sample file in the repository. (5 lines for each address – one
line for each field of the address.)

11. All of your code must be written in the AddressBook class, and the Address class.
(The Address class should be very short – it is just a holding place for the 5 fields of
an address.)

12. Use descriptive variable names in your program, and use all lowercase letters with
underscores separating words. You should appropriately comment your program. It
should have a header (this is started for you - be sure to add your names, the date
you started it, and a description); each function should have docstring comments.

13. You should also comment blocks of code within your functions, explaining what the
code is doing. How much commenting to add is a judgement call - you don’t want too
much, or too little. If you have a block of code (say up to 10 lines long), put a brief
comment before it saying what is about to happen. Then put blank lines between the
blocks of code. Don’t comment individual lines of code, unless they are doing
something that the reader might not see right away.

Any questions about how the program should behave should be posted to campuswire
(category psa2).

Testing your program
There is not an automated test program for this assignment, so you should test them on
your own. Go down the numbered requirements listed above for each problem, and insure
that your program satisfies the requirement. Points will be deducted for each requirement
that is not satisfied.

Pair programming requirement
As described in the syllabus, you should write your program using pair programming.
Recall that in pair programming, you and your partner work together at one computer,
with one of you typing code (the driver), and the other managing (the navigator). To
encourage this from you and your partner, when you are the driver for your team, you
should be working on your own computer. When you switch roles, the driver should sync
her code to the repository, and her partner should then sync onto his computer, and then
become the driver. Remember that you should be switching roles every half hour or so.

So when you follow this approach in writing your program, I should see syncs from both of
you, with significant differences between the code synced. If I don’t see syncs from both of
you, there will be a 10 point penalty on your final grade for the assignment.

Submission Instructions
Important: To be safe, you should run your final code on both you and your partner’s
computers. This will ensure that you are not relying on any special setup on your own
computer for the code to work.

To submit your code, you will need to synchronize it using Git. To make sure your changes
are saved and synchronized, follow these steps.

1. Open the “Source Control” menu, either by clicking on the 3rd icon on the left (right
under the magnifying glass) or by going to “View” and “SCM”.

2. Your addressbook.py file should show up under the “Changes” section. Click on the “+”
icon to the right of the name(s) of the file(s) that you changed to “stage” the changes.
This should move the file to a section named “Staged Changes.”

3. Commit your changes by typing in a descriptive message (e.g. “finished problem”) into
the “Message” textbox (above the Staged Changes area). After entering the message,
click the checkmark icon above the message box to perform the commit. This should
remove the changed files from the Staged Changes section.

4. Then, Sync your commit(s) to the server by clicking the “…” (to the right of the
checkmark from the last step) and select the “Sync” option. This will likely result in a
pop-up notifying you that the sync will do a push and a pull. Select “OK” (or “OK and
don’t ask again”) to complete the sync.

 If you run into problems, make sure you are properly connected to USD’s VPN (or
eduroam wifi if you are on campus), and try the Sync again. If you are still running into
problems, check campuswire and ask a new question there if the answer doesn’t
already exist.

 To make sure that your changes were synced correctly, have your partner do the final
step above (namely “…” and then “Sync”). This should fetch the changes you made. You
can then test on their computer to make sure it works exactly the same as on your
computer. If your partner has trouble accessing and/or running the file, it is likely that
the grader will also have problems and your grade will be negatively impacted.

5. When you have finished the problem, go to campuswire, and post to the psa2_submit
category a message saying that you have submitted psa2.

Grading
When I grade the problem, I will go down the requirements listed above, and up to 10
points will be deducted for each item where you have not met the requirements.

Late Penalties
1. If you commit by the due date, no penalty. Else,
2. if you commit by 10PM on Tuesday, September 29, 10 points late penalty. Else,
3. if you sync by 10PM on Thursday, October 1, 20 points total late penalty. Else,
4. no points.

Academic Integrity
Please review the portion of the syllabus that talks about academic integrity with regard to
writing programs. In summary, do not share or show your code to any other team in class,
and do not turn in any code that you did not write yourself. Don’t look at the code from

another team, or from any other source. The point of these programs is for you to develop
your coding skills.

	Due: Thursday, September 24 @ 10:00PM
	Required Background:
	Assignment Overview:
	Initial Setup
	The Problem
	Testing your program
	Pair programming requirement
	Submission Instructions
	Grading
	Late Penalties
	Academic Integrity

