
CSC 600 Homework Dr. Jozo Dujmović

Procedural programming

Programming is similar to a game of golf.

The point is not getting the ball in the hole

but how many strokes it takes.

 - H. Mills

Inside every well-written large program

is a well-written small program.

 - C.A.R. Hoare

The goal of this homework is to develop your skills in procedural programming. You

should develop three efficient procedural programs and perform a simple performance

measurement. Your programs should be as short and simple as possible, and as fast as

possible. Each program must be documented. For each solution first explain the idea and

then explain the reasons why you think it is a good procedural solution. You must show

your source programs, and results of their execution. All programs should be written in

C++.

1. Plateau program (max sequence length) (a combinatorial algorithm)

The array a(1..n) contains sorted integers. Write a function maxlen(a,n) that returns the

length of the longest sequence of identical numbers (for example, if

a=(1,1,1,2,3,3,5,6,6,6,6,7,9) then maxlen returns 4 because the longest sequence 6,6,6,6

contains 4 numbers. Write a demo main program for testing the work of maxlen. Explain

your solution, and insert comments in your program. The solution should have the time

complexity O(n).

2. Integer plot function (find a smart way to code big integers)

Write a program BigInt(n) that displays an arbitrary positive integer n using big

characters of size 7x7, as in the following example for BigInt(170):

 @@ @@@@@@@ @@@@@

 @@@ @@ @@ @@

 @@ @@ @@ @@

 @@ @@ @@ @@

 @@ @@ @@ @@

 @@ @@ @@ @@

 @@@@@@ @@ @@@@@

Write a demo main program that illustrates the work of BigInt(n) and prints the following

sequence of big numbers 1, 12, 123, 1234, …, 1234567890, one below the other.

3. Array processing (elimination of three largest values) (one of many array reduction

problems)

The array a(1..n) contains arbitrary integers. Write a function reduce(a,n) that reduces

the array a(1..n) by eliminating from it all values that are equal to three largest different

integers. For example, if a=(9,1,1,6,7,1,2,3,3,5,6,6,6,6,7,9) then three largest different

integers are 6,7,9 and after reduction the reduced array will be a=(1,1,1,2,3,3,5), n=7. The

solution should have the time complexity O(n).

4. Iteration versus recursion (an opportunity for performance measurement)

Make a sorted integer array a[i]=i, i=0,…,n-1. Let bs(a,n,x) be a binary search

program that returns the index i of array a[0..n-1] where a[i]=x. Obviously, the result is

bs(a,n,x)=x, and the binary search function can be tested using the loop

for(j=0; j<K; j++)

for(i=0; i<n; i++) if(bs(a,n,i) != i) cout << “\nERROR”;

Select the largest n your software can support and then K so that this loop with an

iterative version of bs runs 3 seconds or more. Then measure and compare this run time

and the run time of the loop that uses a recursive version of bs. Compare these run times

using maximum compiler optimization (release version) and the slowest version

(minimum optimization or the debug version). If you have a desktop machine, use it. If

you must use a laptop, make measurements using AC power, and then same

measurements using only the battery. What conclusions can you derive from these

experiments? Who is faster? Why? What is the time for executing a single bs program? If

you have different compilers you can compare them.

Notes:
1. When you measure the speed, your machine should be disconnected from the Internet, it

should use the AC power supply, and it should run only one program (your performance

measurement program).

2. In C++ you can measure current time in seconds using the following function:

double sec(void)
{

 return double(clock())/double(CLOCKS_PER_SEC);
}

To measure the run time of fast programs we must repeat them many times inside a loop.

The simplest measurement can be performed as follows:

T1 = sec();

for(j=0; j<K; j++)

for(i=0; i<n; i++) if(bs(a,n,i) != i) cout << “\nERROR”;

T2 = sec();

cout << “\nRun time = “ << (T2-T1)/n*1.E9/K << “ nanosec\n”;

If you are interested to see the overhead created by loops and the if statement you might

insert inside the loop the “empty statement” if(n == i) cout << “\nERROR”;

