Assignment 2

<u>Instructions</u>: Problems marked * are to be submitted for grading through **Crowdmark**. The deadline is **Friday**, **Oct. 2**, **23:00** (**PDT**). The remaining problems are included as practice problems, and you are encouraged to try as many as you can.

- *1. (10 points) Let A and B be subgroups of a group G. Recall from Assignment 1 that $A \cap B$ is a subgroup of G, and hence of A.
 - (a) Show that

$$f: A/(A \cap B) \to G/B, \quad a(A \cap B) \mapsto aB$$

is a well-defined map, i.e., is independent of any choice of coset representatives.

- (b) Show that f is injective.
- (c) Deduce that $(A : A \cap B) \leq (G : B)$ in the case where (G : B) is finite.
- (d) Suppose now that $G = S_n$ for some integer $n \ge 2$. Show that if A contains an odd permutation, then exactly half the elements of A are odd (*Hint*: Use (c)).
- *2. (7 points) Let G and H be groups.
 - (a) Show that if A is a subgroup of G, and B is a subgroup of H, then $A \times B$ is a subgroup of $G \times H$.
 - (b) Is is possible for $G \times H$ to have subgroups that are *not* of the kind described in part (a)? Justify your answer with a suitable example or proof.
 - **3**. What are the possible orders of the elements of $\mathbb{Z}_6 \times \mathbb{Z}_9$? How many elements achieve the largest possible order?
- 4. (4 points) For a fixed positive integer $m \ge 2$, consider the following subsets of D_{2m} :

$$A = \{ \mathrm{id}, r^2, r^4, \cdots, r^{2m-2}, s, sr^2, sr^4, \dots, sr^{2m-2} \}; \quad B = \{ \mathrm{id}, r^m \}.$$

- (a) Show that A and B are subgroups of D_{2m} .
- (b) Show that $A \cong D_m$ and $B \cong \mathbb{Z}_2$.
- *(c) Show that if m is odd, then D_{2m} is the internal direct product of A and B (and hence that $D_{2m} \cong D_m \times \mathbb{Z}_2$).
- *5. (8 points) Show that if $n \ge 3$ is *odd*, then D_n is *not* the internal direct product of two *non-trivial* subgroups.
- *6. (7 points) Let H and N be subgroups of a group G.
 - (a) Show that if N is normal, then HN is a subgroup of G.
 - (b) Show that if both N and H are normal, then HN is also normal.
- *7. (5 points) Show that

 $V := \{ \mathrm{id}, (12)(34), (13)(24), (14)(23) \}$

is a normal subgroup of S_4 .

- *8. (9 points) Show that S_4 has no normal subgroups of order 2, 3, 6 or 8.
- **9**. Let *H* be a subgroup of a group *G*. Show that if (G:H) = 2, then *H* is normal.
- 10. Let H be a normal subgroup of a group G. We have seen in class that a normal subgroup of H need not be normal in G. Show, by contrast, that any *characteristic subgroup* of H is normal in G. Here, a subgroup N of H is *characteristic* if it is stable under all automorphisms of H, i.e., if $f(n) \in N$ for all $n \in N$ and $f \in Aut(N)$.