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A. Consistent hypotheses

In the second lecture, we showed that for a finite hypothesis set H, a consis-
tent learning algorithm A is a PAC-learning algorithm. Here, we consider a
converse question. Let Z be a finite set of m labeled points. Suppose that
you are given a PAC-learning algorithm A. Show that you can use A and
a finite training sample S to find in polynomial time a hypothesis h ∈ H

that is consistent with Z, with high probability. (Hint : you can select an
appropriate distribution D over Z and give a condition on R(h) for h to be
consistent.)

B. Oracle PAC learning

1. Learning unions of intervals. Give a PAC-learning algorithm for the
concept class C3 formed by unions of three closed intervals, that is
[a, b] ∪ [c, d] ∪ [e, f ], with a, b, c, d, e, f ∈ R. You should carefully de-
scribe and justify your algorithm. Extend your result to derive a PAC-
learning algorithm for the concept class Cp formed by unions of p ≥ 1
closed intervals, thus [a1, b1]∪ · · · ∪ [ap, bp], with ak, bk ∈ R for k ∈ [p].
What are the time and sample complexities of your algorithm as a
function of p?

2. Hypothesis testing. In the previous problem, the learning algorithm
was given k as input.

(a) Is PAC-learning possible even when k is not provided?

Now, consider, more generally, a family of concept classes {Cs}s
where Cs is the set of concepts in C with size at most some integer
s. Suppose we have a PAC-learning algorithm A that can be used
for learning any concept class Cs when s is given. Can we convert
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A into a PAC-learning algorithm B that does not require the
knowledge of s? This is the main objective of the rest of this
problem.

To do so, we first introduce a method for testing a hypothesis h,
with high probability. Fix ε > 0, δ > 0, and i ≥ 1 and define
the sample size n by n = 32

ε [i log 2 + log 2
δ ]. Suppose we draw an

i.i.d. sample S of size n according to some unknown distribution
D. We will say that a hypothesis h is accepted if it makes at
most 3/4ε errors on S and that it is rejected otherwise. Thus, h
is accepted iff R̂(h) ≤ 3/4ε.

(b) Assume that R(h) ≥ ε. Use the (multiplicative) Chernoff bound
to show that in that case PS∼Dn [h is accepted] ≤ δ

2i+1 .

(c) Assume that R(h) ≤ ε/2. Use the (multiplicative) Chernoff
bounds to show that in that case PS∼Dn [h is rejected] ≤ δ

2i+1 .

(d) Algorithm B is defined as follows: we start with i = 1 and, at each

round i ≥ 1, we guess the parameter size s to be s̃ = b2(i−1)/ log
2
δ c.

We draw a sample S of size n (which depends on i) to test the
hypothesis hi returned by A when it is trained with a sample
of size SA(ε/2, 1/2, s̃), that is the sample complexity of A for a
required precision ε/2, confidence 1/2, and size s̃ (we ignore the
size of the representation of each example here). If hi is accepted,
the algorithm stops and returns hi, otherwise it proceeds to the
next iteration. Show that if at iteration i, the estimate s̃ is larger
than or equal to s, then P[hi is accepted] ≥ 3/8.

(e) Show that the probability that B does not halt after j = dlog 2
δ/ log 8

5e
iterations with s̃ ≥ s is at most δ/2.

(f) Show that for i ≥ d1 + (log2 s) log 2
δ e, the inequality s̃ ≥ s holds.

(g) Show that with probability at least 1 − δ, algorithm B halts af-
ter at most j′ = d1 + (log2 s) log 2

δ e + j iterations and returns a
hypothesis with error at most ε.
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