

A. Consistent hypotheses

In the second lecture, we showed that for a finite hypothesis set \mathcal{H} , a consistent learning algorithm \mathcal{A} is a PAC-learning algorithm. Here, we consider a converse question. Let \mathcal{Z} be a finite set of m labeled points. Suppose that you are given a PAC-learning algorithm \mathcal{A} . Show that you can use \mathcal{A} and a finite training sample S to find in polynomial time a hypothesis $h \in \mathcal{H}$ that is consistent with \mathcal{Z} , with high probability. (*Hint*: you can select an appropriate distribution \mathcal{D} over \mathcal{Z} and give a condition on R(h) for h to be consistent.)

B. Oracle PAC learning

- 1. Learning unions of intervals. Give a PAC-learning algorithm for the concept class C_3 formed by unions of three closed intervals, that is $[a, b] \cup [c, d] \cup [e, f]$, with $a, b, c, d, e, f \in \mathbb{R}$. You should carefully describe and justify your algorithm. Extend your result to derive a PAC-learning algorithm for the concept class C_p formed by unions of $p \ge 1$ closed intervals, thus $[a_1, b_1] \cup \cdots \cup [a_p, b_p]$, with $a_k, b_k \in \mathbb{R}$ for $k \in [p]$. What are the time and sample complexities of your algorithm as a function of p?
- 2. Hypothesis testing. In the previous problem, the learning algorithm was given k as input.
 - (a) Is PAC-learning possible even when k is not provided?

Now, consider, more generally, a family of concept classes $\{\mathcal{C}_s\}_s$ where \mathcal{C}_s is the set of concepts in \mathcal{C} with size at most some integer s. Suppose we have a PAC-learning algorithm \mathcal{A} that can be used for learning any concept class \mathcal{C}_s when s is given. Can we convert \mathcal{A} into a PAC-learning algorithm \mathcal{B} that does not require the knowledge of s? This is the main objective of the rest of this problem.

To do so, we first introduce a method for testing a hypothesis h, with high probability. Fix $\epsilon > 0$, $\delta > 0$, and $i \ge 1$ and define the sample size n by $n = \frac{32}{\epsilon} [i \log 2 + \log \frac{2}{\delta}]$. Suppose we draw an i.i.d. sample S of size n according to some unknown distribution \mathcal{D} . We will say that a hypothesis h is *accepted* if it makes at most $3/4\epsilon$ errors on S and that it is *rejected* otherwise. Thus, his accepted iff $\hat{R}(h) \le 3/4\epsilon$.

- (b) Assume that $R(h) \ge \epsilon$. Use the (multiplicative) Chernoff bound to show that in that case $\mathbb{P}_{S \sim \mathcal{D}^n}[h \text{ is accepted}] \le \frac{\delta}{2^{i+1}}$.
- (c) Assume that $R(h) \leq \epsilon/2$. Use the (multiplicative) Chernoff bounds to show that in that case $\mathbb{P}_{S \sim \mathcal{D}^n}[h \text{ is rejected}] \leq \frac{\delta}{2i+1}$.
- (d) Algorithm \mathcal{B} is defined as follows: we start with i = 1 and, at each round $i \geq 1$, we guess the parameter size s to be $\tilde{s} = \lfloor 2^{(i-1)/\log \frac{2}{\delta}} \rfloor$. We draw a sample S of size n (which depends on i) to test the hypothesis h_i returned by \mathcal{A} when it is trained with a sample of size $S_{\mathcal{A}}(\epsilon/2, 1/2, \tilde{s})$, that is the sample complexity of \mathcal{A} for a required precision $\epsilon/2$, confidence 1/2, and size \tilde{s} (we ignore the size of the representation of each example here). If h_i is accepted, the algorithm stops and returns h_i , otherwise it proceeds to the next iteration. Show that if at iteration i, the estimate \tilde{s} is larger than or equal to s, then $\mathbb{P}[h_i$ is accepted] $\geq 3/8$.
- (e) Show that the probability that \mathcal{B} does not halt after $j = \lceil \log \frac{2}{\delta} / \log \frac{8}{5} \rceil$ iterations with $\tilde{s} \ge s$ is at most $\delta/2$.
- (f) Show that for $i \ge \lfloor 1 + (\log_2 s) \log \frac{2}{\delta} \rfloor$, the inequality $\tilde{s} \ge s$ holds.
- (g) Show that with probability at least 1δ , algorithm \mathcal{B} halts after at most $j' = \lceil 1 + (\log_2 s) \log \frac{2}{\delta} \rceil + j$ iterations and returns a hypothesis with error at most ϵ .