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A. Consistent hypotheses

In the second lecture, we showed that for a finite hypothesis set H, a consis-
tent learning algorithm A is a PAC-learning algorithm. Here, we consider a
converse question. Let Z be a finite set of m labeled points. Suppose that
you are given a PAC-learning algorithm A. Show that you can use A and
a finite training sample S to find in polynomial time a hypothesis h € H
that is consistent with Z, with high probability. (Hint: you can select an
appropriate distribution D over Z and give a condition on R(h) for h to be
consistent. )

B. Oracle PAC learning

1. Learning unions of intervals. Give a PAC-learning algorithm for the
concept class C3 formed by unions of three closed intervals, that is
[a,b] U [c,d] U [e, f], with a,b,c,d, e, f € R. You should carefully de-
scribe and justify your algorithm. Extend your result to derive a PAC-
learning algorithm for the concept class €, formed by unions of p > 1
closed intervals, thus [a1,b1]U---U [ap, by], with ag,br € R for k € [p].
What are the time and sample complexities of your algorithm as a
function of p?

2. Hypothesis testing. In the previous problem, the learning algorithm
was given k as input.

(a) Is PAC-learning possible even when k is not provided?

Now, consider, more generally, a family of concept classes {Cs}s
where Cj is the set of concepts in € with size at most some integer
s. Suppose we have a PAC-learning algorithm 4 that can be used
for learning any concept class Cs when s is given. Can we convert



A into a PAC-learning algorithm B that does not require the
knowledge of s? This is the main objective of the rest of this
problem.

To do so, we first introduce a method for testing a hypothesis h,
with high probability. Fix € > 0, § > 0, and ¢ > 1 and define
the sample size n by n = 3?2[2 log 2 + log %] Suppose we draw an
i.i.d. sample S of size n according to some unknown distribution
D. We will say that a hypothesis h is accepted if it makes at
most 3/4e errors on S and that it is rejected otherwise. Thus, h
is accepted iff R(h) < 3/4e.

(b) Assume that R(h) > e. Use the (multiplicative) Chernoff bound
to show that in that case Pg.pn[h is accepted] < 2{%.

(c) Assume that R(h) < €/2. Use the (multiplicative) Chernoff
bounds to show that in that case Pg.pn[h is rejected] < 2{%.

(d) Algorithm B is defined as follows: we start with ¢ = 1 and, at each
round i > 1, we guess the parameter size s to be § = [20-1)/1og %J .
We draw a sample S of size n (which depends on i) to test the
hypothesis h; returned by A when it is trained with a sample
of size S4(€/2,1/2,5), that is the sample complexity of A for a
required precision €/2, confidence 1/2, and size s (we ignore the
size of the representation of each example here). If h; is accepted,
the algorithm stops and returns h;, otherwise it proceeds to the
next iteration. Show that if at iteration 4, the estimate s is larger
than or equal to s, then P[h; is accepted] > 3/8.

(e) Show that the probability that B does not halt after j = [log 2/log § |
iterations with § > s is at most 6/2.
(f) Show that for i > [1+ (logy s) log 2], the inequality 5 > s holds.

(g) Show that with probability at least 1 — §, algorithm B halts af-
ter at most j/ = [1+ (logy s)log 2] + j iterations and returns a
hypothesis with error at most e.



