CHBE 501-Exam \#1

Question 3-20 points
(a) Show that the condition for the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} to be coplanar is: $\varepsilon_{i j k} a_{i} b_{j} c_{k}=0$.
(b) The Stokes theorem can be stated as

$$
\int_{C} \mathbf{t} \cdot \mathbf{v} d C=\int_{S} \hat{\mathbf{n}} \cdot(\nabla \times \mathbf{v}) d S
$$

for a vector field \mathbf{v}. This is discussed in section A.5. Use this equality between surface (S) and bounding contour (C) integrals to prove that $\nabla \times(\nabla f)=0$ for any single-valued twice-differentiable scalar f. Hint: consider various surface regions S and orientations $\hat{\mathbf{n}}$.

