Project: FlashCards with Classes and Exception Handling – Project 3
Project Overview

Starting with the FlashCards system Project 2 as your base code set, refactor your code to ensure the user inputs cannot cause the system to fail. All functional and technical requirements from Projects 1 and 2 remain (see Project 2 document if necessary). No new functional requirements are added for this project. The additional exception handling requirements are new technical requirements, however, and described below.
PROJECT OVERVIEW FOR PROJECT2:

Exercise Overview

Starting with the FlashCards system you developed in Project 1, refactor your code (see code refactoring) to enhance the user experience and to use objects and classes. All functional requirements in Project 1 remain, except where enhancing the system replaces specific functions.

Overview from Project 1. Implement a Java program that creates math flashcards for elementary grade students. User will enter his/her name, the type (+, -, *, /), the range of the factors to be used in the problems, and the number of problems to work. The system will provide problems, evaluate user responses to the problems, score the problems, and provide statistics about the session at the end.

Technical Requirements

The system should include the following Java components:
· Exception handling for entering the user-name. The system will handle the entry of any character or String, including multiple tokens (a token is a single character or multiple characters or a String; multiple tokens are separated by a space), on the console line.

· There is no additional editing or exception handling since both user-names and the input type String can be of any values.

· Hint: Use Scanner method .nextLine() rather than Scanner method .next().
· Exception handling for entering the operation. The system will handle the entry of any character or String or multiple tokens. Unlike the entry of the user-name, the system will process only the first character of the entry.
· Entries that are not one of “A”, “S”, “M”, or “D” will not allow the system execution to continue, but also will not cause an uncontrolled termination.
· System will advise user that the entry was not valid and prompt for a new entry.

· Only a valid entry will allow the system execution to continue.
· Hint: The code for this solution was developed in class during Week 8. You may use that code. You will need to implement it into your system.
· Exception handling for the number of problems. The system will handle the entry of any character or string or multiple tokens. The system will process only the first token. Non-integer entries and entries less-than-or-equal-to zero will not allow the system execution to continue, but also will not cause an uncontrolled termination.
· Entries should be checked for non-integer values and for integer values that are less than 1.
· System will advise user that the entry was not valid and prompt for a new entry.

· Only a valid integer entry will allow the system execution to continue.

· Hint: The code for this solution was developed in class on Oct x or y. You may use that code. You will need to implement it into your system.

· Exception handling for range values low and high. The system will handle the entry of any character or string. Non-integer entries and entries less-than zero will not allow the system execution to continue, but also will not cause an uncontrolled termination.

· Entries should be checked for non-integer values and for integer values that are less than 0.

· System will advise user that the entry was not valid and prompt for a new entry.

· Only a valid entry will allow the system execution to continue.

· Hint: The code for the number of problems solution is very similar to what is needed here.

· Exception handling for responses to problems. The system will handle the entry of any character or string. Non-integer entries and entries less-than zero will not allow the system execution to continue, but also will not cause an uncontrolled termination.

· Entries should be checked for non-integer values and for integer values that are less than 0.

· System will advise user that the entry was not valid and prompt user by presenting the problem again.

· Only a valid integer entry will allow the system execution to continue.

· Hint: The code for the number of problems solution is very similar to what is needed here. However, the re-presentation of the problem will require some thought.
Bonus Points Opportunity – Optional Functional Enhancement

You will notice in the Example Output below that an exit loop has been added, giving the user the option to continue with another session without having to restart the system. You may add this function to your system for an additional 3 points.

· To earn the bonus points, the exit loop must have exception handling and be unbreakable.

Example output (from the Eclipse console)
Please enter your name: Kevin Short
What operation would you like to work - A, S, M, or D? z
Must be A, S, M, or D. Try again.
What operation would you like to work - A, S, M, or D? &
Must be A, S, M, or D. Try again.
What operation would you like to work - A, S, M, or D? m
Enter number of problems: 0
Invalid entry. Try again
Enter number of problems: -1
Invalid entry. Try again
Enter number of problems: z
Invalid entry. Try again
Enter number of problems: 3
Enter low value for range of factors: -2
Invalid entry. Try again
Enter low value for range of factors: z
Invalid entry. Try again
Enter low value for range of factors: 0
Enter high value for range of factors: 9
8 * 4 = z
Invalid entry. Try again
8 * 4 = &
Invalid entry. Try again
8 * 4 = 32
correct
7 * 3 = -21
Invalid entry. Try again
7 * 3 = 21
correct
4 * 7 = 28
correct
Summary
Kevin Short 2020-10-14-22-05-52-981 Multiplication Range: 0 - 9 #Prob: 3 Correct: 3 Score: 100 Time: 26
8 + 4 = 32 A: 32 correct
7 + 3 = 21 A: 21 correct
4 + 7 = 28 A: 28 correct
Would you like to try another set of problems? Y/N? n
Thank you for playing! Play again soon.
se cases.
CODE FROM PREVIOUS PROJECT:
import java.util.Scanner;

import java.util.*;

import java.lang.*;

public class Remed_P2_Driver {

public static void main(String[] args) {

// TODO Auto-generated method stub

String name;

String operation;

int numOfProb;

int loRange;

int hiRange;

int response;

// Get inputs - Name, Operation, Number of Problems, Range Values

Scanner input = new Scanner(System.in);

System.out.print("Please enter your name (1 name only, e.g., Mike): ");

name = input.next();

System.out.print("What operation would you like to work -");

System.out.print(" A, S, M, or D? ");

operation = input.next();

System.out.print("How many problems would you like to work? ");

numOfProb = input.nextInt();

System.out.print("Enter the factor range for the values of your problems, e.g., 0 9: ");

loRange = input.nextInt();

hiRange = input.nextInt();

System.out.println();

System.out.println();

// Invoke the constructors, which updates vars in Problem and Session, and run various methods, too

Remed_P2_Session session = new Remed_P2_Session(name, operation, numOfProb);

// Ensures that the loRange is less than the hiRange, if not swaps them

int temp = hiRange;

if (loRange > hiRange) {

hiRange = loRange;

loRange = temp;

}

Remed_P2_Problem problem = new Remed_P2_Problem(loRange, hiRange);

// Run the problem loop ***

session.setStartTime();

for (int i = 0; i < session.getNumOfProb(); i++) {

// Get factors

problem.setFactor1();

problem.setFactor2();

// Run cases – ASMD – using switch ***************************************

switch(session.getOperation()) {

case("A") :

problem.setCalc(problem.getSum());
// This sets the calculated (calc) answer

System.out.print(problem.getFactor1() + " + " + problem.getFactor2() + " = ");

response = input.nextInt();

// Get user response to compare to calc

problem.setProbPts(response);

// Evaluating problem to assign pts / correct or not

System.out.println(problem.getCI());
// Tells user if response was correct or not

session.setRunScore(problem.getProbPts());
// Add 1 if correct, 0 if incorrect

session.setProbArray(problem.getFactor1(), " + ", problem.getFactor2(),

" = ", problem.getResponse(), problem.getCalc(), problem.getCI(), i);

break;

case("S") :

problem.setCalc(problem.getFactor1());
// This sets the calculated (calc) answer

System.out.print(problem.getSum() + " - " + problem.getFactor2() + " = ");

response = input.nextInt();

// Get user response to compare to calc

problem.setProbPts(response);

// Evaluating problem to assign pts / correct or not

System.out.println(problem.getCI());
// Tells user if response was correct or not

session.setRunScore(problem.getProbPts());
// Add 1 if correct, 0 if incorrect

session.setProbArray(problem.getFactor1(), " + ", problem.getFactor2(),

" = ", problem.getResponse(), problem.getCalc(), problem.getCI(), i);

break;

case("M") :

problem.setCalc(problem.getProduct());
// This sets the calculated (calc) answer

System.out.print(problem.getFactor1() + " * " + problem.getFactor2() + " = ");

response = input.nextInt();

// Get user response to compare to calc

problem.setProbPts(response);

// Evaluating problem to assign pts / correct or not

System.out.println(problem.getCI());
// Tells user if response was correct or not

session.setRunScore(problem.getProbPts());
// Add 1 if correct, 0 if incorrect

session.setProbArray(problem.getFactor1(), " + ", problem.getFactor2(),

" = ", problem.getResponse(), problem.getCalc(), problem.getCI(), i);

break;

case("D") :

problem.setCalc(problem.getFactor1());
// This sets the calculated (calc) answer

if (problem.getFactor2() == 0)

problem.resetFactor2();

System.out.print(problem.getProduct() + " / " + problem.getFactor2() + " = ");

response = input.nextInt();

// Get user response to compare to calc

problem.setProbPts(response);

// Evaluating problem to assign pts / correct or not

System.out.println(problem.getCI());
// Tells user if response was correct or not

session.setRunScore(problem.getProbPts());
// Add 1 if correct, 0 if incorrect

session.setProbArray(problem.getFactor1(), " + ", problem.getFactor2(),

" = ", problem.getResponse(), problem.getCalc(), problem.getCI(), i);

break;

}

}

// Execute the finishing steps – printing out stats and problems **********************

session.setEndTime();

System.out.println();

System.out.println();

System.out.println("Summary");

System.out.printf("%s %s Range:%2d -%2d #Prob: %3d Correct: %3d Score: %3d Time: %4d",

session.getDateTime(),

session.getOperLong(),

problem.getLoRange(),

problem.getHiRange(),

session.getNumOfProb(),

session.getRunScore(),

session.getPctScore(),

session.getElapsedTime()

);

System.out.println();

System.out.println();

for (int i = 0; i < session.getNumOfProb(); i++) {

System.out.println(session.getProbArray(i));

}

}

}

PROBLEM CLASS

import java.util.*;

public class Remed_P2_Problem {

private int factor1;

private int factor2;

//private int factor2Z;

private int loRange;

private int hiRange;

private int sum;

private int product;

private int calc;

private int response;

private String cI;

private int probPts;

private String probImage;

Remed_P2_Problem() {

}

Remed_P2_Problem(int loRange, int hiRange) {

this.loRange = loRange;

this.hiRange = hiRange;

}

// Invoke Random constructor

Random rand = new Random();

public void setLoRange(int loRange) {

this.loRange = loRange;

}

public void setHiRange(int hiRange) {

this.hiRange = hiRange;

}

public int getLoRange() {

return loRange;

}

public int getHiRange() {

return hiRange;

}

// Set and get factors for the problems

public int getFactor(int loRange, int hiRange) {

return (int)(rand.nextDouble() * (hiRange - loRange + 1) + loRange);

}

public void setFactor1() {

factor1 = getFactor(loRange, hiRange);

}

public void setFactor2() {

factor2 = getFactor(loRange, hiRange);

}

// This method is invoked when operation = division and factor2 = 0 value;

// resets factor2 to non-zero value by setting low range parameter to 1

public void resetFactor2() {

factor2 = getFactor(1, hiRange);

}

public int getFactor1() {

return factor1;

}

public int getFactor2() {

return factor2;

}

// Method for sum and product calcs

public int getSum() {

return factor1 + factor2;

}

public int getProduct() {

return factor1 * factor2;

}

public void setCalc(int calc) {

this.calc = calc;

}

public int getCalc() {

return calc;

}

public void setResponse(int response) {

this.response = response;

}

public int getResponse() {

return response;

}

public void setProbPts(int response) {

this.response = response;

if (calc == response) {

probPts = 1;

cI = "correct";

}

else {

probPts = 0;

cI = "incorrect";

}

}

public int getProbPts() {

return probPts;

}

public String getCI() {

return cI;

}

}

SESSION CLASS

public class Remed_P2_Session {

private String name;

private String operation;

private String operLong;

private int numOfProb;

private String dateTime;

private String dateTimeFormat;

private long startTime;

private long endTime;

private String[] probArray;

private int runScore;

private int pctScore;

Remed_P2_Session() {

}

Remed_P2_Session(String name, String operation, int numOfProb) {

this.name = name;

this.operation = operation;

this.numOfProb = numOfProb;

setOperation(operation);

initProbArray();

setDateTime();

}

public void setName(String name) {

this.name = name;

}

public String getName() {

return name;

}

// Method sets the operation to upper case if not already that way, and updates full-word operLong

public void setOperation(String operation) {

operation = operation.toUpperCase();

this.operation = operation;

switch(operation) {

case "A" : operLong = "Addition"; break;

case "S" : operLong = "Subtraction"; break;

case "M" : operLong = "Multiplication"; break;

case "D" : operLong = "Division"; break;

}

}

public String getOperation() {

return operation;

}

public String getOperLong() {

return operLong;

}

public void setNumOfProb(int numOfProb) {

this.numOfProb = numOfProb;

}

public int getNumOfProb() {

return numOfProb;

}

// Methods for the session elapsed time and for the session record date and time

public void setStartTime() {

startTime = System.currentTimeMillis();

}

public long getStartTime() {

return startTime;

}

public void setEndTime() {

endTime = System.currentTimeMillis();

}

public long getEndTime() {

return endTime;

}

public long getElapsedTime() {

return (endTime - startTime) / 1000;

}

public void setDateTime() {

LocalDateTime dateTime = LocalDateTime.now();

DateTimeFormatter frmt = DateTimeFormatter.ofPattern("yyyy-MM-dd-HH-mm-ss-SSS");

dateTimeFormat = dateTime.format(frmt);

}

public String getDateTime() {

return dateTimeFormat;

}

public String getDT() {

return dateTime;

}

public void setRunScore(int probPts) {

runScore = runScore + probPts;

}

public long getRunScore() {

return runScore;

}

public void initProbArray() {

probArray = new String[numOfProb];

}

public void setProbArray(int val1, String operation, int val2, String equals,

int response, int calc, String cI, int i) {

probArray[i] = val1 + operation + val2 + equals + response + " A: " + calc + " " + cI;

}

public String getProbArray(int i) {

return probArray[i];

}

public int getPctScore() {

double numOfProbD = numOfProb;

double runScoreD = runScore;

pctScore = (int)((runScoreD / numOfProbD) * 100);

return pctScore;

}

}

PAGE
2

