
EE 430 SPICE ASSIGNMENT #1 DIFFERENTIAL AMPLIFIER DESIGN

Due: Oct. 28, 2020.

In this assignment, you will design a differential amplifier satisfying the required differential gain, input impedance, and single-ended common-mode gain; when fed by a small-signal. Then you will simulate your circuit on LTSpice to compare the simulation results with hand calculations.

A. Hand design: Design the bipolar differential amplifier and the current source and bias network $(R_1, Q_3, and Q_4)$ above such that: (i) Differential gain: $A_d \ge 200 \frac{V}{V}$, (ii) Input differential resistance: $R_{id} \ge 50 k\Omega$, and (iii) $A_{cm} < 0.1$ where A_{cm} is the <u>single-ended common-mode gain</u> (the gain to a common-mode input signal when the output is measured not differentially but from one of the outputs with respect to ground). Design the circuit with BJTs having $\beta = 200, V_A = 100 V$, and $V_{BE} = \sim 0.7 V$ in Forward Active. Use $+V_{DD} = 9 V$ and $-V_{SS} = -9 V$. Clearly show your steps.

Design Suggestion for Part A.

- 1. Derive A_d , R_{id} , and A_{cm} expressions. (When deriving A_{cm} and R_{id} you can ignore r_o of Q1 and Q2. Needless to say, you cannot ignore r_o of Q4 when deriving A_{cm} . Do not ignore r_o of Q1 or Q2 when deriving A_d).
- 2. Plug the "dc currents", "resistors", " V_{th} ", " β ", " V_A ", etc. into A_d , R_{id} , and A_{cm} expressions and simplify the expressions to the extent possible (e.g., manipulate the expressions and then replace $V_A = 100 V$, $\beta = 200$, etc.)
- 3. Consider the three design constraints. You basically have each constraint represented in terms of the dc currents, and resistors.
- 4. Start with dc current selection satisfying your constraint(s) => Find R1, and other parameters associated with the dc current selected.
- 5. Then based on the constraint(s) => Find R2.

In your simulations on the next page, use the BJT model 2N2222 of NXP, which has a SPICE model as below with V_A and β highlighted:

SPICE Model .model 2N2222 NPN(IS=1E-14 VAF=100 BF=200 IKF=0.3 × TB=1.5 BR=3 CJC=8E-12 CJE=25E-12 TR=100E-9 TF=400E-12 ITF=1 VTF=2 × TF=3 RB=10 RC=.3 RE=.2 Vceo=30 Icrating=800m mfg=NXP) **B. DC Analysis:** In LTSpice do a DC operating point simulation (.op) with both inputs connected to ground. Find the simulated DC values for I_{R1} , I_{C3} , I_{C4} , I_{C1} , I_{C2} , V_{B3} , $V_{E1,2}$, V_{O1} , V_{O2} . Compare them with your hand calculations. Additionally, comment on the matching between I_{R1} and I_{C4} and comment on the theoretical vs. simulated match between I_{R1} and I_{C4} .

C. Transient Analysis: In LTSpice do a transient simulation (.tran) for 100 ms.

For differential small-signal input simulations:

Apply $v_{id} = 1 mV_p$ sinusoidal signal at 100 Hz. [i.e., $v_{id1} = +\frac{v_{id}}{2} = 0.5 mV \sin (2 * \pi * 100 Hz * t)$ and $v_{id2} = -\frac{v_{id}}{2} = 0.5 mV \sin ((2 * \pi * 100 Hz * t) + \pi)$ with DC offset = 0V.] For common-mode small-signal input simulations:

Apply $v_{cm} = 1 mV_p$ sinusoidal signal at 100 Hz. [i.e., $v_{icm1} = v_{icm2} = v_{cm} = 1 mV \sin (2 * \pi * 100 Hz * t)$ with DC offset = 0V.]

- 1. For the differential small-signal input, what is the expected emitter voltage of Q1 and Q2, $v_{e1}(=v_{e2})$? Plot the simulated waveform. What is the simulated value of $v_{e1}(=v_{e2})$?
- 2. Plot v_{id} , $v_{od}(v_{od} = v_{o2} v_{o1})$, and i_{id} . Note that i_{id} is the base current of Q1 ($i_{id} = i_{b1}$). Calculate the simulated $A_d = v_{od}/v_{id}$ and $R_{id} = v_{id}/i_{id}$. Compare the values with your design targets.
- 3. If the simulation results do not match the design constraints, tune your circuit to achieve the goals.
- 4. For the common-mode small-signal input, plot v_{cm} and v_{ocm} . ($v_{ocm} = v_{ocm2} = v_{ocm1}$ when the input is a common mode signal)

Report Requirements

A. In part A, your hand calculations must follow a flow, you must show every step for derivations, and clearly present how/why you select the parameters with any approximations you might have made. **B and C.** For parts B and C, in addition to answering the questions and plotting the simulation results requested, fill the table below, and explain the reasons for any discrepancy exceeding 10%.

I_{R1}	I _{C3}	I_{C4}	I_{C1}	I _{C2}
	I _{R1}	I _{R1} I _{C3}	I _{R1} I _{C3} I _{C4}	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

	V_{B3}	<i>V</i> _{<i>E</i>1,2}	V_{O1}	<i>V</i> ₀₂	A _d	R _{in}	A _{cm}
Hand							
calculations							
Simulated							
Percent							
discrepancy							