Assignment 08: Linked Lists

COSC 2336: Data Structures and Algorithms

Fall 2020

Objectives

e More practice with dynamic memory and pointers.

e Also more practice with using templates, as we would like our LinkedList to be templatized to work with lists
of any type.

o Look at a more realistic example of an ADT.

e Learn how to construct linked lists, and perform operations like iterate over, insert and delete items in the list.

Description

In this assignment, you will be given an already templatized version of a LinkedList class. The implementation given
is mostly the same one as described and presented in chapter 17 of our textbook. you will be adding some additional
operations to the template LinkedList class for this assignment.

In particular, you will be adding functionality to use the linked list to search for items, delete items from the list, and
display the list, among others. You will need to look at and understand the LinkedList class given, and the node
data structure(s) that are being managed to add and remove items from the internal linked list.

Setup

For this assignment you will be given the following files:

File Name Description

assg08-tests.cpp Unit tests for the member functions
you are to write.

LinkedList.hpp Header file defining LinkedList class
and where member function prototypes
should be declared.

LinkedList.cpp Implementation file for the
LinkedList class member functions.

Set up a multi-file project to compile the .cpp source files and run them as shown for the class. The Makefile you were
given should be usable to create a build project using the Atom editor as required in this class. Since LinkedList is
a template class you do not actually compile the LinkedList.cpp file separately into an object file. If you look at
the bottom of the LinkedList.hpp header, it includes LinkedList.cpp, the template implementations. So any file
that includes the LinkedList.hpp header file actually also includes the template implementations as well.

The general approach you should take for this assignment, and all assignment is:

1. Set up your project with the given starting code. The files should compile and run, but either no tests will be
run, or tests will run but be failing.

2. For this project, start by uncommenting the first TEST_CASE in the assg08-tests.cpp file. These are the unit
tests to test the functionality of search() member function, the first member function you are to implement.

3. Add the correct function prototype for the search() member function to the LinkedList class in the

LinkedList.hpp header file. The prototype consists of the name of the member function, its input parameters
and their types, and the return value of the function.

Add a implementation of the search() member function to the LinkedList.cpp implementation file. The
function should have the same signature as the prototype you gave in the header file. Documentation for the
function has not been given for you this time, so add documentation of your function first. Don’t forget to
indicate that this function is a member of the ListType class. And in this assignment, you need to indicate the
function is a template function that parameterizes a .

Your code should compile and run now. Make sure after adding the function prototype and stub your code
compiles and runs. However, your unit tests might be failing initially.

Incrementally implement the functionality of your search() member function. You should try to add no more
than 2 or 3 lines of code, and then make sure your program still compiles and runs. Start by adding code to get
the first failing test to pass. Then once that test passes, move on to the next failing tests until you have all
tests passing. If you write something that causes a previously passing test to fail, you should stop and figure
out why, and either fix it so that the original test still passes, or remove what you did and try a new approach.
Once you have the search() member function implemented and all unit tests passing, you should then move
on to the other functions in the order suggested. Some member functions use previous ones in this assignment,
so do them in the order given for you in the tasks below.

I have given you a starting template for your LinkedList that implements a lot of the basic functionality of the
LinkedList class. This code is based on the example LinkedList class from our Chapter 17 Malik textbook.

Tasks

You should set up your project/code as described in the previous section. In this section we give some more details on
implementing the member functions for this assignment. You should perform the following tasks for this assignment:

1.

Write the member function to search() the linked list for a particular piece of information. The search function
takes a const T& as its parameter and it returns a boolean result. This member function should also be declared
as a const member function, as it does not change the list if it is called. An example implementaiton for this func-
tion is actually given in our textbook, though you may need to change it slightly to work with our assignment code.

. Also add/write the deleteNode () member function, which is also given in our textbook implementation. This

function takes a const T& as its parameter, which is the value of an item to search for and delete. Thus the
first part of this function is similar to the search() function, in that you first have to perform a search to find
the item. But once found, the node containing the item should be removed from the list (and you should free
the memory of the node). This function is only guaranteed to find the first instance of the item and delete it, if
the item appears multiple times in the list, the ones after the first one will still be there after the first item
is removed by this function. This function should return a LinkedListItemNotFoundException if the item
asked for is not found. The LinkedListItemNotFoundException class has already been defined for you in the
starting template header file.

Write a member function named findItemAtIndex() for the LinkedList class. This function will be given a
single integer parameter called index. It will search through the linked list and return a reference to the info of
index’th node in the list. It is important that you return a T& (a reference to a type T) from this function.
This function works using 0 based indexing (like arrays), thus if we ask for index 0, the first or head node info
should be returned. If we ask for index 1, the info in the node after the head node is returned. If the list only
has 5 nodes (indexes 0 to 4) and we ask for index 5 or greater, you should throw a LinkedListItemNotFound
exception. (This exception class has already been defined in the LinkedList header given to you, you simply
need to throw it). For a little extra credit, you can add the overloaded operator[] to define indexing operations
on your LinkedList which just uses your working findItemAtIndex() member function.

. Write a member function named deleteItemAtIndex (). This function will perform similar to the previous one,

but instead of returning the info in the index’thed node, it will simply delete the node. Thus your logic will be
similar to task 3, you will need to search till you get to the index’thed node in the list. But at that point you
should remove the node (and don’t forget to delete it, to free up its memory). If the asked for index does not
exist, as usual you should throw a LinkedListItemNotFound exception.

Extra credit: you can write this recursive member function for a little bit of additional extra credit. Write
a member function named toReverseString(). There is already a string function, that creates a string
representation of the items in the list and returns the string. Your method will create a string of the items in

the linked list, but in reverse order. You should use the recursiveReversePrint () discussed in our textbook
as an example. E.g. this method should be implemented using a recursive function definition to accomplish
reversing the list. But for credit, your function needs to use recursion, and it needs to build and return a string
recursively (not print the results on the cout stream). There are tests for this extra credit in the testing file,
but you can simply leave them commented out if you don’t work on this function. Hint: You will need to write
two functions named toReverseString(). One of them will take no parameters, and is what is usually called
by a user of the LinkedList class. But the second version should be the recursive function, and it will take a
Node<T>* as its parameters.

Example Output

Here is the correct output you should get from your program if you correctly implement all the class functions and
successfully pass all of the unit tests given for this assignment. If you invoke your function with no command line
arguments, only failing tests are usually shown by default. In the second example, we use the -s command line option
to have the unit test framework show both successful and failing tests, and thus we get reports of all of the successfully
passing tests as well on the output.

$./test

A1l tests passed (168 assertions in 7 test cases)

$./test -s

test is a Catch v2.7.2 host application.
Run with -7 for options

assg08-tests.cpp:31: PASSED:
CHECK(list.isEmpty())
with expansion:
true

. output snipped ...

A1l tests passed (168 assertions in 7 test cases)

Assignment Submission

A MyLeoOnline submission folder has been created for this assignment. There is a target named submit that will
create a tared and gziped file named assg02.tar.gz. You should do a make submit when finished and upload your
resulting gzip file to the MyLeoOnline Submission folder for this assignment.

$ make submit

tar cvfz assg08.tar.gz assg08-tests.cpp assg08-main.cpp
LinkedList.hpp LinkedList.cpp

assg08-tests.cpp

assg08-main.cpp

LinkedList.hpp
LinkedList.cpp

Requirements and Grading Rubrics

Program Execution, Output and Functional Requirements

1.

Your program must compile, run and produce some sort of output to be graded. 0 if not satisfied.

2. (15 pts.) search() works and correctly returns boolean result.

3.

(20 pts.) deleteNode() is implemented correctly. Works for all cases of a linked list, like removing first and
last nodes. Detects invalid indexes and throws the asked for exception.

(30 pts.) findItemAtIndex() is implemented correctly. Correctly throws exception for invalid indexes. Is
correctly returning a reference, so can actually be used for assignment.

(35 pts.) deleteItemAtIndex() is working. Correctly handles deleting the first and last items of list, and
deleting case when list goes from 1 item to an empty list. Throws exception for invalid indexes as asked for.
(5 bonus pts.) Up to an additional 5 points of extra credit for correctly adding the mentioned overloaded
operator[] and the toReverseString() recursive functions.

Program Style

Your programs must conform to the style and formatting guidelines given for this class. The following is a list of the
guidelines that are required for the assignment to be submitted this week.

1.

3.

Most importantly, make sure you figure out how to set your indentation settings correctly. All programs must
use 2 spaces for all indentation levels, and all indentation levels must be correctly indented. Also all tabs must
be removed from files, and only 2 spaces used for indentation.

A function header must be present for member functions you define. You must give a short description of the
function, and document all of the input parameters to the function, as well as the return value and data type of
the function if it returns a value for the member functions, just like for regular functions. However, setter and
getter methods do not require function headers.

You should have a document header for your class. The class header document should give a description of the
class. Also you should document all private member variables that the class manages in the class document
header.

Do not include any statements (such as system("pause") or inputting a key from the user to continue) that
are meant to keep the terminal from going away. Do not include any code that is specific to a single operating
system, such as the system("pause") which is Microsoft Windows specific.

	Objectives
	Description
	Setup
	Tasks
	Example Output
	Assignment Submission
	Requirements and Grading Rubrics
	Program Execution, Output and Functional Requirements
	Program Style

