Intermediate Statistical Theory Homework Sheet 4

Basic Questions

- 1. Show that the sample proportion $\frac{X}{n}$ is a minimum variance unbiased estimator of the binomial parameter θ (Hint: Treat $\frac{X}{n}$ as the mean of a random sample of size *n* from a Bernoulli population with the parameter θ .)
- 2. If *X*₁ is the mean of a random sample of size *n* from a normal population with the mean μ and the variance σ_1^2 , \bar{X}_2 is the mean of a random sample of size *n* from a normal population with the mean μ and the variance σ_2^2 , and the two samples are independent, show that
 - (a) $\omega X_1 + (1 \omega) X_2$, where $0 \le \omega \le 1$, is an unbiased estimator of μ ; (b) the variance of this estimator is a minimum when $\omega = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$.
 - (c) find the efficiency of the estimator of part (a) with $\omega = 1/2$ relative to this estimator with $\omega = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$.
- 3. Let $Y_1, Y_2, ..., Y_n$ be a random sample of size *n* from the pdf

$$f_Y(y;\theta) = \frac{1}{(r-1)!\theta^r} y^{r-1} e^{-y/\theta}, y > 0$$

- (a) Show that θ̂ = 1/r Ȳ is an unbiased estimator for θ.
 (b) Show that θ̂ = 1/r Ȳ is a minimum-variance estimator for θ.
- 4. Let X_n denote a random variable with mean μ and variance b/n^p , where p > 0, μ and b are constants (not functions of n). prove that X_n converges in probability to μ . (use Chebyshev's inequality).
- 5. An estimator $\hat{\theta}_n$ is said to be *squared-error consistent* for θ if $\lim_{n\to\infty} E[(\hat{\theta}_n \theta)^2] = 0$.
 - (a) Show that any squared-error consistent $\hat{\theta}_n$ is asymptotically unbiased.
 - (b) Show that any squared-error consistent $\hat{\theta}_n$ is consistent.