1. Let X be the set of 2×2 matrices. Define

$$d: X \times X \to \mathbb{R}; \quad d(x,y) = \max_{1 \le i,j \le 2} \{|x_{i,j} - y_{i,j}|\}$$

where $x_{i,j}$ is the i, j-th entry of x. Prove or disprove that this is a metric on X.

- 2. Let $A = \left\{ \frac{2}{n} : n \in \mathbb{Z} \right\}$. Does A have a supremum and/or an infimum? If so, prove it.
- 3. Let $A = \left\{\frac{2}{n} : n \in \mathbb{Z}\right\}$. Determine if A is a closed set. Prove or disprove from the definition of a closed set.
- 4. Let X be a set. Define

$$d: X \times X \to \{0,1\} \subseteq \mathbb{R}$$

$$d(x,y) = \left\{ \begin{array}{ll} 0 & x = y \\ 1 & x \neq y \end{array} \right..$$

Let $x_0 \in X$, consider the open ball of radius 1 around x_0 ,

$$B(x_0, 1) = \{x \in X : d(x, x_0) < 1\}$$

the closed ball of radius 1 around x_0 ,

$$\bar{B}(x_0, 1) = \{x \in X : d(x, x_0) \le 1\}$$

and the closure of the open ball of radius 1 around x_0 , denoted $\overline{B(x_0, 1)}$. Determine, explicit descriptions of these sets and prove your answers.

Hint: It is not true in general that the closure of the open ball and the closed ball are the same set!

Double Hint: Is a singleton set $\{x_0\}$ open or closed or both with this metric?