
Introduction and Homework Focus

This homework is concerned with material from Chapters 1-7 of the textbook
and Bayesian statistics. It focuses on the bread-and-butter methodology of
applied machine learning: setting up testing and training datasets, fitting a
variety of models, then using tools like cross-validation to choose a model to
use.
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1. Empirical Study: Cross-Validation Method 1

Load the mnist.csv dataset. This is exactly the training dataset that you
used in HW1, where you fit several knn models to this dataset and found a
“best” value of k. In this problem, you will estimate the error of this procedure
using cross-validation:

(1) Do 3-fold cross-validation, using this single value of k for the knn model.
Report the estimated error.

(2) Open HW1, where you trained on the same dataset and found the test
error. How do these results compare? How would you expect them to
compare in general?

Note: Doing this question and the question from HW1 is a little bit silly.
It is intended as a bit of a warmup for cross-validation.

2. Empirical Study: Cross-Validation Method 2

Download the red wine dataset from: https://archive.ics.uci.edu/ml/
datasets/wine+quality. Your goal in this question is to predict wine quality
based on all other variables.

(1) Split the data set into a training set and a test set.
(2) For each of the following, fit the given model, report any hyperparam-

eters chosen, and report the test error.
(a) Fit a linear model using least squares.
(b) Fit a ridge regression model on the training set, with hyperparam-

eter � chosen by cross-validation on the training data.
(c) Fit a lasso model on the training set, with hyperparameter � cho-

sen by cross-validation.
(d) Use regsubsets to choose the best linear model using forward and

backward stepwise regression.
(3) Comment on the results obtained. How accurately can we predict wine

quality? Is there much di↵erence among the test errors resulting from
these approaches? Are the models themselves similar?

3. Simulation Study: Cross-Validation Method

Do Question 8 from Chapter 5 of the textbook.
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4. Simulation Study: Screening, Stepwise Selection, and ROC
Curves

The following toy problem is motivated by the interesting (but very di�cult)
problem of using genome-wide association studies (GWAS) to screen people
for rare diseases with genetic components. 2

(1) Load the dataGWAS.csv, and split it into equal-sized testing and train-
ing datasets. The first column is the indicator function of a disease.
The remaining columns are indicator functions for a collection of alleles
that have been studied. Fit a standard logistic regression model to the
training set and apply to the testing set. Summarize the model fit and
the performance of the model on the test data.

(2) Repeat the previous step, but this time use Lasso or ridge regression.
Compare the results.

(3) Draw an estimate of the ROC curve for the best method you used.
Describe any interesting features.

(4) You wish to use your model for screening. This means measuring a
small number of variables, then forwarding a small fraction of people for
further testing. Based on funding considerations, you wish to forward
roughly 1 percent of the population for further testing. Describe a
decision procedure based on the model you used in the previous step.
Does the plotted ROC curve influence your choice?

5. Bayesian Workflow: Correcting Regression Coefficients

Recall that, in our introduction to Bayesian statistics, we developed an
“empirical Bayesian” method to correct estimated incidence rates for kidney
cancer when we had a very large number of counties. In this question, we will
apply the same idea to a much smaller dataset.

I begin by describing the dataset and the problem. Load the dataset School-
Correct.csv and display some parts of it. The rows correspond to student, and
each student i comes with the following information:

(1) The school they belong to (from 1 to 6), which I will denote Si.
(2) The student’s test score on a standardized test after some standard-

ization/centering, which I will denote Ti.

To set notation, I will denote by N(j) = {i : Si = j} the students in school j.
The scientific questions we will try to answer are: which school is the

“best,” and how confident are we in our comparisons?

2See e.g. the recent survey A scientometric review of genome-wide association studies
for a list of several thousand experiments in this area.

4



(1) We will start with naive estimates. For each school j 2 {1, 2, . . . , 6},
fit the simple model

Ti ⇠ N(�j, 5
2), i 2 N(j).

This model has 1 parameter, �j, and there are 6 schools, so in total
you should be estimating (1)(6) = 6 parameters in this part of the
question.3

Finally, rank the schools according to the magnitude of �j.
(2) We will next use Bayesian methods to compute “corrected” estimates.

Observe that |N(j)| varies a great deal - some schools are much bigger
than others. We define the following Bayesian model and priors:4 5

� ⇠ Unif[1, 50]

�j
i.i.d.⇠ N(0, �2), j 2 {1, 2, . . . , 6}

Ti ⇠ N(�j, 5
2).

Using Markov chain Monte Carlo or otherwise, sample from the pos-
terior distribution and compute credible sets for �1, . . . , �6. Hint: Con-
ditional on �, you have already seen how to sample from the posterior
on each of �1, . . . , �6. Using this fact may allow you to write a sampler
that is both simpler and better than the “usual” Metropolis-Hastings
algorithm.

(3) Using your samples from the posterior distribution, rank the 6 schools
by the expected value of �i. Compare this ranking to the naive estimate
from part 1 of the question.

(4) Posterior distributions can be used to describe uncertainty in a ranking.
Compute the probability (according to the posterior distribution) that
your estimate of the top-ranked school is really the top-ranked school.

3As always, it is slightly silly to assume that the noise is known. Unfortunately, the
simple algorithm I gave in class becomes quite ine�cient when the number of parameters
grows, and I don’t want to focus too much on these issues. If you have learned STAN or
another method that is more e�cient in higher dimensions, please feel free to fit a more
realistic model.

4This is similar to the example from class, except that we have one new “level” of pa-
rameters: the top equation for �. This extra level, often called a “hyperparameter,” is
necessary because we don’t have enough data to nail down � precisely. In class we had
many thousands of subpopulations, rather than 6 as in this question.

5I chose this particular hierarchical model because it is easy to write down. If you are
interested in hierarchical models and would like to try a more serious choice, please just
indicate this on your homework. I am happy to provide references on Piazza.
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6. Simulation Study: Bias-Variance Tradeoff for K-NN
Regression

We explore the bias-variance tradeo↵ for K-NN regression by doing a sim-
ulation study. Along the way, we will practice simulating random variables,
numerical integration, and using confidence intervals. The question is fairly
long, but most of this is setting notation.

We set some notation. Throughout this question, we will be attempting
to learn the function f(x) = sin(x) with domain [0, 2⇡]. Furthermore, we
will assume that there is no “measurement error” - in any sample, a point
x will always be paired with the correct value f(x). For any sample X =
(X1, . . . , Xn), define f̂k,X to be the k-NN regression estimator associated with
the sample X (see Section 3.5 of the textbook for the definition).

Consider N samples of size n from [0, 2⇡]:

X(j)
1 , . . . , X(j)

n
i.i.d.⇠ Unif[0, 2⇡],

and let X(j) = (X(j)
1 , . . . , X(j)

n ). Define the sample mean, sample squared-bias,
sample variance and sample mean-squared error by

Meank(x) =
1

N

NX

j=1

f̂k,X(j)(x)

Bias2k(x) = (Meank(x)� f(x))2

Vark(x) =
1

N � 1

NX

j=1

(f̂k,X(j)(x)�Meank(x))
2

MSEk(x) =
1

N

NX

j=1

(f̂k,X(j)(x)� f(x))2.

Define the averaged versions as the average with respect to x, so that e.g.

MSEk =
1

2⇡

Z 2⇡

0

MSEk(x). (6.1)

(1) Fix n = 25 and N large. Simulate samples and then make the following
three plots: k vs Bias2k, k vs Vark, and k vs MSEk.

Note 1: Please read the full question before doing this. You will
want to choose values of N , k that give good results in the following
parts of the question.

Note 2: The integral in (6.1) is not intractable, but it is annoying.
If you would prefer, you can approximate it using the quadrature or
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Monte Carlo methods discussed in class, or using any other technique
you would prefer.

(2) In the previous question, you should find that the sample MSE is large
when k is too small and when k is too big, obtaining a minimum
somewhere in the middle. Find the optimal value of k. Also give
an informal argument as to why your choices of N, k in the previous
question are likely “good enough” to have confidence in your answer.

Hint: Notice that MSEk is random (it depends on the sample

X(j)
1 , . . . , X(j)

n ), and in fact it is an average of a collection of i.i.d. ran-
dom variables. The true distribution of these random variables is a
little complicated, but for the purposes of these question you can as-
sume it is a nice random variable and use the confidence intervals that
you learned in an earlier class.

(3) Repeat the optimization procedure in parts (1,2) of this question, this
time with n = 100. Does the value of k change? In what direction
does it go? In light of this evidence, predict what would happen if you
did the same procedure with n = 10000.

7. Empirical Study: LASSO vs. Regression Workflow

In this study, we will try to predict rental house prices. Open the datasets
ListingsTrain.csv, ListingsOptimization.csv and ListingsTest.csv, obtained from
insideairbnb.com and then slightly tweaked for this question. You will try
to predict the listing prices from the other variables.

(1) Explore the numerical values in the training dataset using your favourite
tools - summary, pairs, hist, or anything else you like. Clean up the
data by dealing with NAs and converting non-numerical data to numer-
ical data when appropriate (though see part 4 of this question before
doing so). Comment on any relationships and any possibly-bad data-
points.

Hint 1: The “price” variable is a sequence of characters, not a nu-
meric variable. You should definitely fix that. Many categorical vari-
ables (especially true/false ones) have only a small number of values;
those should also be converted into numerical variables where possible.

Hint 2: Some features are pretty useless. It is fine to simply remove
a column if it look useless, or almost all the data is missing or obvious
bad. Simply explain what your choices are (and don’t do this to all
the features).
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(2) You should have found some suspicious datapoints in the first part
of this question. Create two copies of the dataset: one with the sus-
picious points removed, the other with them retained. Try training
both LASSO and standard regression models on the training dataset
using the numerical covariates, optimizing the parameters using cross-
validation with the optimization dataset. In the end you should have
four models: standard and LASSO regression, with and without suspi-
cious points. Test their accuracy on the test dataset.

(3) Which of the models in the previous question is best? Was it OK to
remove the suspicious datapoints from the training dataset? Were the
error estimates from the optimization dataset accurate?

(4) Some of the features, such as “description” and “amenities,” are text
fields or text lists. Choose a collection of words W that appear some-
where in these variables. For each word w 2 W , create a {0, 1}-valued
dummy variable that indicates the presence of a given word in a given
listing’s text field. For a word w, denote by p(w) the percentage of
listings containing that word. Denote by n the number of listings in
the training set. Ensure that your collection of words W satisfies:
(a)

P
w2W p(w) � n

2 (that is, the words appear in some nontrivial
fraction of all listings).

(b) |W | � 12 (that is, there are many words in the collection).
(c) Very common words such as “the” or “and” should not appear in

the collection.
In order to extract words from a text field in R, you may find the the
command grepl useful.

(5) Repeat model-training for both standard and LASSO regression on
this larger collection of covariates (with outliers removed or not per
the results of the previous part of the question). How do the results
change?

8. Theory: LASSO, Ridge and Variable Selection

In this question, you will consider the “ridge” and “LASSO” penalties for
the usual linear regression model:

Yi = �0 + �1Xi + ✏i.

(1) Show that, for any dataset (X1, Y1), . . . , (Xn, Yn), there exists some

finite value ⇤ so that for all choices of hyperparameter � > ⇤, the
coe�cients estimated by LASSO regression will all be exactly 0.
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(2) Show that the above is not true for Ridge regression. That is, show
that there exists some dataset (X1, Y1), . . . , (Xn, Yn) so that for any

finite value of hyperparameter �, the coe�cients estimated by ridge
regression will not all be exactly 0. Hint: the easiest way to do this is
to just try a few concrete small datasets - n = 5 should be fine.

9. Bayesian Workflow: Latent Parameters

In this problem, you will use a Bayesian latent parameter model to simul-
taneously classify datapoints and estimate model parameters.

Load the two datasets BrazilPrices.csv and UsaPrices.csv. These two datasets
give the rental prices of airbnb locations in Rio de Janeiro and San Francisco
respectively. The data was taken from insideairbnb.com but then edited
to make this question easier; for that reason the results will be much better
than you could expect for the real real data. See the end of the document for
details on what was done; you can use this to try the same method on the real
dataset.

Denote by X1, . . . , Xn the Brazilian prices, Y1, . . . , Ym the American prices,
and Z1, . . . , Zm+n the combined list.

(1) Load the data and fit the simple Gaussian model

Xi
i.i.d.⇠ N(µ0, �

2
0), Yi

i.i.d.⇠ N(µ1, �
2
1).

What do you observe? Are the two datasets well-separated?
(2) Let’s pretend that we knew that some listings were from San Francisco

and others from Rio de Janeiro, but didn’t get to observe which listing
was from which city. Create a new vector that concatenates the two
datasets to represent this. We will see that we can e↵ectively learn
µ0, µ1 anyway, by simultaneously estimating these two parameters and
the city of every single listing. 6

More precisely, we will fit the following model for the combined price
vector Z1, . . . , Zn+m:

µ0 ⇠ N(30, 122) (9.1)

µ1 ⇠ N(150, 302)

6We won’t estimate �0,�1 due to some subtle degeneracy issues that arise in many classi-
fication applications. The basic issue is as follows: if you allow for arbitrary variances, you
can get likelihood values to become arbitrarily large by making one “class” that has only
a single datapoint but variance that is extremely close to 0. Solutions for this problem are
well-known but beyond the scope of this course. Interested readers can probably find and
explore these degenerate answers very quickly based on their solutions to this problem.
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Ci
i.i.d.⇠ Bern(0.5), i 2 {1, 2, . . . , n+m}

Zi ⇠ N(µCi , 85
2), i 2 {1, 2, . . . , n+m}.

Note that this model has m + n + 2 parameters µ0, µ1, C1, . . . , Cm+n

for m+ n datapoints Z1, . . . , Zm+n. The parameters C1, . . . , Cm+n are
often called “latent” variables. They are distinguished from the “usual”
parameters µ0, µ1 by the fact that they could in principle be measured
directly - we simply don’t have access to the measurements.

As a first step in fitting this model, write down a formula for the
conditional probability distributions:

fa,b,i(c) ⌘ P [Ci = c|µ0 = a, µ1 = b], c 2 {0, 1}, a, b 2 R (9.2)

gc,0(A) ⌘ P [µ0 2 A|(C1, . . . , Cn+m) = c], c 2 {0, 1}n+m, A ⇢ R
gc,1(A) ⌘ P [µ1 2 A|(C1, . . . , Cn+m) = c], c 2 {0, 1}n+m, A ⇢ R

Note: you don’t need to be able to compute from this formula by hand
- but you will need to be able to implement it on a computer in the
next question. Note 2: the functions gc,0 and gc,1 are nearly identical,
and you may be able to find a single formula that incorporates both
functions.

(3) Implement code to sample from the distributions in Equation (9.2).
The beginning and end of the first function should be:

f<-function(a,b,zi) {
...
return(c)}

where a, b 2 R and c 2 {0, 1}. The beginning and end of the second
function should be:

g0<-function(c,z) {
...
return(a)}

where c 2 {0, 1}n+m and a 2 R. Also implement g1. Finally, check that
g0, g1 give roughly the right answer when the input c = (c1, . . . , cn+m)
is the correct vector (that is, when ci = 0 if and only if the i’th listing
is from Brazil). Also answer the following question: do you expect the
samples from g0 to have exactly the same mean as you computed in
the first part of this question? Why or why not?
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(4) In class, we saw the Metropolis-Hastings algorithm for sampling from
a posterior. The next-most popular algorithm is the Gibbs sampler.
In the context of this example, the MH algorithm from class would be
rewritten as:

Gibbs<-function(theta,T,Z) {
ell = length(theta)
res = matrix(0,nrow=T+1,ncol=ell)
res[1,] = theta
for(i in 1:T) {

res[i+1,1] = g0(res[i,3:ell],Z)
res[i+1,2]= g1(res[i,3:ell],Z)
for(j in 3:ell){

res[i+1,j] = f(res[i+1,1], res[i+1,2], Z[j])
}

}
return(res)
}

where ✓ 2 R2 ⇥ {0, 1}n+m is a starting position, T is a number of steps
and Z is your data.

Run this algorithm for a large number of steps. Compute posterior
credible intervals for your estimate of µ0, µ1.

Note: Depending on what you did, this may run poorly. If you wish,
you may subsample the two datasets at this stage of the analysis. Make
sure you keep at least a few hundred datapoints, and indicate clearly
that you are doing this.

(5) Note that the posterior distribution fpost assigns a probability that
Ci = 1 and a probability that Ci = 0. This defines a classifier, by
taking the class with the highest posterior probability.

Compute this classifier and comment on its quality and any relation-
ship between the classification accuracy and list price.
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Grabbing Data for the Latent Variable Problem

The data in the latent variable problem is “real,” but heavily modified to
make the question easier:

#Brazil
raw = read.csv("rdjlistings.csv")
raw_prices = raw$price
prices_fixed= gsub(’[$]’, ’’, raw_prices)
prices_fixed= gsub(’,’, ’’, prices_fixed)
prices_fixed = as.numeric(prices_fixed)
prices_fixed = prices_fixed[prices_fixed < 650] #Remove huge outliers
prices_fixed = prices_fixed*0.19 #Convert to USD
prices_fixed = prices_fixed*0.65 #This is fake.
write.table(prices_fixed, "BrazilPrices.csv")

# SF
raw = read.csv("sflistings.csv")
raw_prices = raw$price
prices_fixed= gsub(’[$]’, ’’, raw_prices)
prices_fixed= gsub(’,’, ’’, prices_fixed)
prices_fixed = as.numeric(prices_fixed)
prices_fixed = prices_fixed[prices_fixed < 350] #Remove huge outliers
prices_fixed = prices_fixed*1.1 #This is fake.
write.table(prices_fixed, "UsaPrices.csv")

.
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