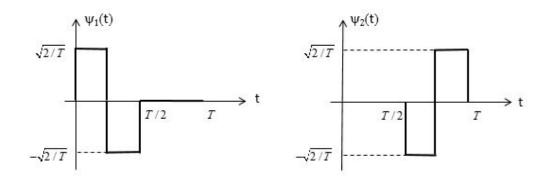
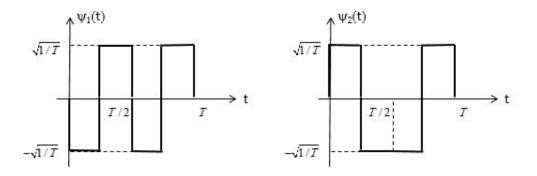


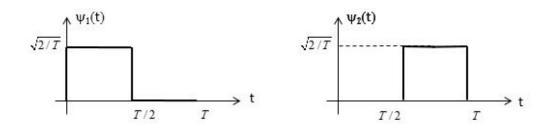
<u>Instructions</u>: Add the last three digits of your student ID. Divide the result by 4 to obtain a reminder R. The *Type* of exam that you need to solve is equal to R + 1.


The exam problem statements can be found in the pages below.

Problem	Problem	Problem	Total
# 1	# 2	# 3	points
/40	/25	/35	


- 1. Consider a digital communication system using the 16-QAM IEEE 802.11 mapping that was shown in class¹.
 - (a) Express the last 4 digits of your student ID in Binary Coded Decimal (BCD) format to obtain a bit string of 16 bits. Sketch the associated waveform s(t) for the pulses below. For the purpose of your sketch, you may assume that T = 1 and $E_s = 5$. (Hint: 4 symbols. $s(t) = s_1\psi_1(t) + s_2\psi_2(t)$.)
 - i. Exam type 1:

ii. Exam type 2:



iii. Exam type 3:

¹See also lecture note 10_Modulations_Wireless_Standards.pdf in Canvas under Files/Lectures.

iv. Exam type 4:

- (b) Evaluate the average bit error probability P_b for the average signal energy-to-noise ratio value below:
 - i. Exam type 1: $E_s/N_0 = 20 \text{ dB}$
 - ii. Exam type 2: $E_s/N_0 = 15 \text{ dB}$
 - iii. Exam type 3: $E_s/N_0 = 12 \text{ dB}$
 - iv. Exam type 4: $E_s/N_0 = 17 \text{ dB}$

For the purpose of your computation, you may use the simple approximation formulas in the Appendix at the end of the exam. Express your answer in terms of the Gaussian *Q*-function and evaluate it using either Table 1 in the Appendix or MATLAB.

- (c) With the values from part (a), estimate the most likely information bits sent if the matched filters (or correlators) outputs (Y_1, Y_2) are equal to
 - i. (0.5, -1.5)ii. (-3.5, -0.5)iii. (2.5, 2.5)iv. (-2.5, 0.5)
- 2. (Pulse shaping) Consider a binary communication link transmitting at 1 Mbps.
 - (a) Sketch very carefully the power spectral density of the pulse shaping technique below.
 - i. Exam type 1: Polar RZ
 - ii. Exam type 2: Unipolar NRZ
 - iii. Exam type 3: Polar Manchester
 - iv. Exam type 4: AMI NRZ

For the purpose of your sketch, use a normalized pulse amplitude so that $a^2T_b = 1$.

(b) Add the last four digits of your student ID number. Then divide the result by 10 to obtain a reminder R. and use a binary representation of R to obtain a 4-bit sequence. Use the technique in part (a) to sketch the associated waveform.

- 3. Energy, symbol rate and bandwidth of quadrature amplitude modulation (QAM)
 - (a) Compute the minimum average signal energy-to-noise ratio $(E_s/N_0)_{\min}$ in dB that required in order to achieve an average bit error probability $P_b \leq 2 \times 10^{-4}$ if the mapping is
 - i. Exam type 1: 256-QAM
 - ii. Exam type 2: 1024-QAM
 - iii. Exam type 3: 64-QAM
 - iv. Exam type 4: 4096-QAM

For convenience, you may use Table 2 and the simple approximation formulas in the Appendix at the end of the exam.

- (b) The bit rate of a communication link using the mapping in part (a) is 40 Mbps. Determine the symbol rate R_s in symbols per second (baud).
- (c) Sketch carefully the overall lowpass channel response |X(f)| if square-root raisedcosine (SRRC) pulses are used with the rolloff factor α value below
 - i. Exam type 1: $\alpha = 0.85$
 - ii. Exam type 2: $\alpha = 0.45$
 - iii. Exam type 3: $\alpha = 0.15$
 - iv. Exam type 4: $\alpha = 0.65$

APPENDIX

Table 11 Scietted values of the Calassian & function									
0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
5.00e-01	4.60e-01	4.21e-01	3.82e-01	3.45e-01	3.09e-01	2.74e-01	2.42e-01	2.12e-01	1.84e-01
1.59e-01	1.36e-01	1.15e-01	9.68e-02	8.08e-02	6.68e-02	5.48e-02	4.46e-02	3.59e-02	2.87 e- 02
2.27e-02	1.79e-02	1.39e-02	1.07e-02	8.20e-03	6.21 e- 03	4.66e-03	3.47e-03	2.56e-03	1.87 e-03
1.35e-03	9.68e-04	6.87 e- 04	4.83e-04	3.37e-04	2.33e-04	1.59e-04	1.08e-04	7.23e-05	4.81e-05
3.17e-05	2.07e-05	1.33e-05	8.54e-06	5.41e-06	3.40e-06	2.11e-06	1.30e-06	7.93e-07	4.79e-07
2.87e-07	1.70e-07	9.96e-08	5.79e-08	3.33e-08	1.90e-08	1.07e-08	5.99e-09	3.32e-09	1.82e-09
	5.00e-01 1.59e-01 2.27e-02 1.35e-03 3.17e-05	0.00.15.00e-014.60e-011.59e-011.36e-012.27e-021.79e-021.35e-039.68e-043.17e-052.07e-05	0.00.10.25.00e-014.60e-014.21e-011.59e-011.36e-011.15e-012.27e-021.79e-021.39e-021.35e-039.68e-046.87e-043.17e-052.07e-051.33e-05	0.00.10.20.35.00e-014.60e-014.21e-013.82e-011.59e-011.36e-011.15e-019.68e-022.27e-021.79e-021.39e-021.07e-021.35e-039.68e-046.87e-044.83e-043.17e-052.07e-051.33e-058.54e-06	0.00.10.20.30.45.00e-014.60e-014.21e-013.82e-013.45e-011.59e-011.36e-011.15e-019.68e-028.08e-022.27e-021.79e-021.39e-021.07e-028.20e-031.35e-039.68e-046.87e-044.83e-043.37e-043.17e-052.07e-051.33e-058.54e-065.41e-06	0.00.10.20.30.40.55.00e-014.60e-014.21e-013.82e-013.45e-013.09e-011.59e-011.36e-011.15e-019.68e-028.08e-026.68e-022.27e-021.79e-021.39e-021.07e-028.20e-036.21e-031.35e-039.68e-046.87e-044.83e-043.37e-042.33e-043.17e-052.07e-051.33e-058.54e-065.41e-063.40e-06	0.00.10.20.30.40.50.65.00e-014.60e-014.21e-013.82e-013.45e-013.09e-012.74e-011.59e-011.36e-011.15e-019.68e-028.08e-026.68e-025.48e-022.27e-021.79e-021.39e-021.07e-028.20e-036.21e-034.66e-031.35e-039.68e-046.87e-044.83e-043.37e-042.33e-041.59e-043.17e-052.07e-051.33e-058.54e-065.41e-063.40e-062.11e-06	0.00.10.20.30.40.50.60.75.00e-014.60e-014.21e-013.82e-013.45e-013.09e-012.74e-012.42e-011.59e-011.36e-011.15e-019.68e-028.08e-026.68e-025.48e-024.46e-022.27e-021.79e-021.39e-021.07e-028.20e-036.21e-034.66e-033.47e-031.35e-039.68e-046.87e-044.83e-043.37e-042.33e-041.59e-041.08e-043.17e-052.07e-051.33e-058.54e-065.41e-063.40e-062.11e-061.30e-06	

 Table 1: Selected values of the Gaussian Q-function

Example: $Q(2.5) = 6.21 \text{e-} 03 = 6.21 \times 10^{-3}$.

Table 2: Selected values of the inverse Gaussian Q-function

Q(x)	x
10^{-1}	1.28
10^{-2}	2.33
10^{-3}	3.10
10^{-4}	3.73
10^{-5}	4.27
10^{-6}	4.76
10^{-7}	5.20
10^{-8}	5.61
10^{-9}	6.00
10^{-10}	6.63
10^{-11}	6.71
10^{-12}	7.03
10^{-13}	7.35
10^{-14}	7.65

Example: $Q^{-1}(10^{-4}) = 3.73.$

Average bit error probability approximation formulas

M-PAM:

$$P_b = Q\left(\sqrt{\frac{6}{(M^2 - 1)}}\frac{E_s}{N_0}\right).$$

 $M ext{-}\text{PSK}$:

$$P_b = Q\left(\sqrt{\frac{2E_s}{N_0}}\sin^2\left(\frac{\pi}{M}\right)\right).$$

M-QAM:

$$P_b = 2 Q \left(\sqrt{\frac{3}{(M-1)} \frac{E_s}{N_0}} \right).$$