[image: Table

Description automatically generated]
[image: Table

Description automatically generated with medium confidence]
[image: Text

Description automatically generated][image: A picture containing text, person, screenshot, document

Description automatically generated] [image: Table

Description automatically generated]
[image: Table

Description automatically generated]
image1.png
‘The objective of this project is to design and simulate the datapath and control unit for a pipelined system,

‘which can execute the following assembly instruction

Function Symax. ercote [opt | op2 | fumet Operation
Code
Signed addition | addopl,op2 | 111 | reg | e | 0001 opl =opl +op2
T
Signed sub opl, op2 reg |z [0010 opl =opl - op2
subtraction
Signed mul opl, 0p2 reg | ez | 0100 opl —opl * op2
multiplication op!: Product (lower half)
RO: Product (upper half)
Signed division | div opl, op2 reg | ez | 1000 opl: 16-bit quoticnt
RO: 16-bit remainder
AND immediate [andioplop2 [o0 | reg | tmm | NA opl = opl & {8'b0, constant}
d
WA .
OR immediate | or opl, op2 oo | reg | tmm opl =opl | {8°B0, constant}
Load byte towoptimmd op2) | 1000 [reg [ree | Na
unsigned
Store byte shopt,immdopd) [1011 [reg [reg | N
Load iwvopl.immdop2) [1100 [reg [reg | N
Store swoplimmd(op2) | 100 [reg [ree | na +op2] = opl
extend immd)
Branch on less than | bit opl. op2 00 e | imma | nia i (opl < RO) then PC - PC + op2
(sign extend op2 & shif lef)
Branch on greater | bgtopl, op2 o0 NA i (opl > RO) then PC = PC + op2
than (sign extend op2 & shif lef)
Brnchonequal | beqoploop2 | 010 [reg [imma. | NA i (opl ~ RO) then PC = PC + op2
(sign extend op2 & shif lef)
jump. jmp opl o o NA pe = pe+opl
set (sign extend opl & shif lef)
halt Halt o000 NA halt program exceution

image2.png
Each addressable memory location is a byte. The memory module can store 2% words. Each
instruction is 16-bit long (1 word). Each register is 16-bit long (I word). There are 16 registers
denoted by RO through R15. Register RO is used as an operand implicitly in signed multiplication,
signed division, and branch instructions. There are 4 possible instruction formats:

Type A:

4-bit opeode | 4-bit operand 1 | 4-bit operand 2 | 4-bit funct code

Type B:

4-bit opeode | 4-bit operand 1| 4-bit operand 2 | d-bit offset

Type C:
4-bitopeode | 4-bit operand 1 8-bit offset/constant
Type D:
4- bit opeode 12-bit_offet in jump - unused in halt

You need to follow the design criteria discussed in Chapter 4 of the textbook. In particular, you
‘must add enough logic to deal with hazards. Your system should also handle exceptions. In case
of any exception (for example wrong opcode, an arithmetic overflow, etc.) you need to halt the
execution of the program and display a message indicating the type of exception, which has
oceurred.

PHASE 1
First, you need to design the datapath and control unit that meet the above requirements and
validate your design.

image3.png
pAsER:
oo he dsign i complete, model nd st cachcomponentf e syt n Ve, Verify
the Runcioealy of the individual componeats sing st fles witen in Verlog. Afier
‘modeling s vaidation f individal componats, iaslte the complee sysiemin Veriog. Use
 machine 004 progyam tst hesimulte sysem. Yo e s th aessbly code the wil
b provided infie leturs. Y ouneedtostoe the machint code verion o he assembly pogram
providd inthe meamory i before tsin the dsign.

Use a stimulus file to ilustrate the functionality of the simulated system. In the stimulus fle you
must: i) instantiate the simulated system, i) provide a clock generator block, i) nitalize all
necessary parameters (such as reset) and provide any other necessary input, and i) display input
& output ports of major componens such as PC, ADDERS, MEMORY, REGISTER FILE, ALU,
‘and pipeline buffers (inputs and outpu) on every negative edge of the clock. These values will be-
used o test your system. It will lso show the number of lock eyels requircd for each instruction.

“The Verilog code you provide must the riginal work of the team. You must indicate ifany Verilog
ode that you provide i not your original work and must st thereference(s) used o get the code.
You only get credit for the code you designed.

image4.png
Table of contents (with page number).

Status report (4 template or this will be provided).

A professionally drawn diagram which shows the datapath. Properly label each
component.

The high representation of any control logic used in the design including the main control
wunit, ALU control uni, and any hazard detecion, register forwarding used.(truth table or
other forms)

Verilog source code and test il for each componen of he datapath.

The test assembly program used 10 test the simulated system with expected resuls.

The stmulus module used for testing the system.

Simulation Results for the top-level

image5.png
Test Assembly
The register file and the memory module for your project must b initialized based on the
iven immediate values or instructions. All immediate values and memory addresses are given
s hexadecimal numbers. Registrs are denoted by RO - R1S. In case of insiructions, you need o
First convert them into machine code and then store therm i the memory. The memory and.
segister file should be re-nitalized with the given values on cach resct.

RID o000

RII 3099

RI2 ccce

RIS o002

RIS o011

RIS o000
Memory
Content

o ADDRI4, R2

02 SUBRIL, R2

04 ORi R, 0088

06 ANDI RS, 94

s MULRS. R6

01 DIVRI, R6

oc SWRS, 4(R9)

o ORiRS.2

image6.png
0 LWRI4 ARS)

12 SUB R0, RO
4 ADDRI R2

16 SUBRIR?

15 ANDI RS, 2

P LBUR6, 4R9)
i SB R6, 6(R9)
1E LI R6, 6%9)
20 SUBR7, RI3

2 BEQR7. 4

24 ADDRI1, RI
26 BLTR7,S

E ADDRI1, R2
2 BGTR7.2

b ADDRI,RI

x® ADDRI, RI

30 LIRS, 0/R9)
32 ADD RS, RS

34 SRS, 2 (R9)
36 LWRIO.2 (R9)
38 ADD RIZ RI2
3 SUBRI3, RIZ
3¢ ADD RIZ RI3
3 HALT

Oher memory locations = 0000
Data Memory (data and address i he)
o 3856

02 o000

04 4312

06 BEDE.

s ADEF

Oher memory locations = 0000

